Faculty
Professor Terje Haukaas has been a member of the structural engineering group in the Department of Civil Engineering since 2003. He received his Master's and PhD degrees from the University of California at Berkeley in 1999 and 2003. Originally from Norway, Dr. Haukaas obtained his undergraduate degree from the Norwegian University of Science and Technology in Trondheim in 1996 after obtaining an engineering degree from the Stavanger University College in 1994 and a technician degree from the Stavanger Technical College in 1992. He worked as a researcher and engineer in Norway from 1996 to 1998. Prior to entering the field of engineering, Dr. Haukaas had become a Journeyman and Master Builder of carpentry. Dr. Haukaas conducts research on probabilistic modelling of hazards, structures, and impacts, with emphasis on computational simulation models. He has co-authored a number of journal papers on reliability, sensitivity, and optimization analysis applied to civil engineering problems. Software development is an integral part of Dr. Haukaas’ research. He developed the first version of the Matlab toolbox FERUM and he implemented the first reliability and sensitivity options in OpenSees. He later spearheaded the development of Rt and Rts, which are computer programs for multi-hazard and multi-model reliability and optimization analysis.
Awards & Honours
- 2016-2017 UBC Killam Teaching Prize
- President, Civil Engineering Risk and Reliability Association (CERRA), 2015-2019
- Semi-Plenary Speaker, COMPDYN 2017, Rhodes, Greece, June 15-17, 2017
- Keynote Speaker, ICCSTE'16, Ottawa, Canada, May 5-6, 2016
- Chair (organizer), ICASP12, Vancouver, Canada, July 12-15, 2015
- Early Career Keynote Speaker, ICOSSAR 2013, New York, June 16-20, 2013
- Student Appreciation Award from the Civil Undergraduate Student Club: Top 4th Year Professor 2015, 2016
- Student Appreciation Award from the Civil Undergraduate Student Club: Top 3rd Year Professor 2007, 2010, 2012, 2013
- Best paper award, ASCE Journal of Computing in Civil Engineering, 2007
- Fulbright Fellowship, 1998
Probabilistic mechanics, structural reliability and optimization, timber engineering, earthquake engineering, decision making, risk, advanced structural analysis, finite elements, response sensitivity analysis, software development.
CIVL 332 | Structural AnalysisIntroduction to indeterminate structural analysis; approximate analysis of structures; calculation of displacements using virtual work; flexibility (force) method; stiffness method for frames; moment distribution method. |
CIVL 435 | Advanced Structural AnalysisShear flow, shear deformation, St. Venant torsion, warping torsion, P-delta and geometric stiffness, buckling of columns and frames, cylindrical shells, beams on elastic foundation, shear wall analysis, elasto-plastic analysis. Introduction to the finite element method. |
CIVL 518 | Reliability and Structural SafetyProbability theory and random variables. Performance functions and probability of non-performance: simulations and FORM/SORM methods. Applications. System reliability. Time-dependent reliability and introduction to stochastic processes. |
2020
2019
2018
2016
2013

CEME - Room 2014
Civil and Mechanical Engineering BuildingThe University of British Columbia
6250 Applied Science Lane
Vancouver BC V6T 1Z4
Canada